
BlindTLS: Circumventing TLS-based HTTPS censorship
Sambhav Satija

University of Wisconsin-Madison
Rahul Chatterjee

University of Wisconsin-Madison

ABSTRACT
Governments across the globe limit which sites their citizens can
visit by employing multiple kinds of censorship techniques for dif-
ferent types of traffic. ISPs have been able to effectively censor
HTTPS traffic by inspecting the TLS handshake which leaks the
domain being visited. TLS1.3 attempts to solve this with a proposed
ESNI extension which encrypts the SNI (server name indication)
value. Since ESNI is optional, ISPs have been known to simply
drop handshakes that attempt to use it; SNI based censorship is
therefore still a problem even in TLS1.3. We present BlindTLS, a
technique that hides the true SNI value in TLS1.2. BlindTLS re-
quires no server modifications and expects only minimal (existing)
external infrastructure to circumvent TLS-based censorship. We
evaluate and show that BlindTLS is able to successfully provide
access to a majority of websites blocked by a real-world ISP with
minimal performance overhead.

CCS CONCEPTS
• Social and professional topics→Censorship; • Security and
privacy → Security protocols;

KEYWORDS
Censorship, Circumvention, SNI, TLS

ACM Reference Format:
Sambhav Satija and Rahul Chatterjee. 2021. BlindTLS: Circumventing TLS-
based HTTPS censorship. In ACM SIGCOMM 2021 Workshop on Free and
Open Communications on the Internet (FOCI’21), August 27, 2021, Virtual
Event, USA. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/
3473604.3474564

1 INTRODUCTION
It is fairly common for governments to censor websites their citizens
can visit. They achieve this in different ways. China, for instance,
implements a nationwide firewall, colloquially known as the Great
Firewall of China or GFW, which detects and prevents connections
to blocked websites [3] and uses several techniques to prevent
circumvention. In India, the government issues directives to the
ISPs, which are free to implement their own means of detecting and
blocking connections to websites on a deny-list [25]. In addition to
preventing access to certain websites, censorship techniques can
also be used to track which websites a user visits, violating their
privacy.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
FOCI’21, August 27, 2021, Virtual Event, USA
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8640-1/21/08.
https://doi.org/10.1145/3473604.3474564

ISPs use different filters to prevent a client from connecting to a
blocked website. Broadly speaking, traffic is filtered by checking
and manipulating (a) unencrypted DNS packets, (b) IP packets, (c)
HTTP headers, and (d) leaky TLS handshakes. Manipulation of DNS
traffic can be prevented by using DNS over HTTPS (DoH) [11] or
DNS over TLS (DoT) [12]. Major browsers now support DoH and
use it by default, rendering censorship using DNS packet manip-
ulation largely ineffective (as long as the DoH or DoT servers are
accessible). ISPs hesitate to employ IP filters for blocking websites
to avoid overblocking [1, 2, 25, 29]. HTTP packet inspection (and
manipulation) has been mostly thwarted by the adoption of HTTPS
in the last decade [17]. Therefore, ISPs instead identify the domain
a client is trying to access by snooping on the TLS handshake’s sub-
ject name identifier (SNI) field. Although TLS1.3 optionally allows a
client to hide the SNI value by sending it in an encrypted-SNI (ESNI)
field, this has not been widely adopted. Due to this low adoption,
ISPs simply drop all TLS handshakes which include ESNI. Thus,
ISPs can still effectively censor HTTPS traffic by parsing the TLS
handshake.

To evade censorship and improve user privacy, a separate class
of work broadly treats the ISP as a network adversary and builds
protocols to prevent it from peeking into plaintext packets or ma-
nipulating them. For example, VPN services [20, 22], Tor [6], and
decoy routing [14] enable routing through alternate paths by creat-
ing overlay networks over helper nodes. In such systems, the ISP
sees the the intermediate relay node (for instance, the VPN server
or the Tor relay) as the destination node. Due to their ability to
hide the actual destination domain from the ISP, these systems are
highly effective and hence widely used to circumvent censorship.
However, all these strategies suffer from one key drawback: As the
entire traffic from the client is forwarded through the helper nodes,
the helper node has to share a significant portion of their network
bandwidth with the client.

In contrast, we propose a censorship circumvention technique,
called BlindTLS, that introduces minimal overhead by selectively
transferring packets over an encrypted TCP proxy. It significantly
improves the client’s performance by sending most of the network
traffic directly to the server, while still bypassing any ISP filters.
BlindTLS achieves this by having the client setup the initial TLS
session via an encrypted tunnel. This effectively hides the TLS hand-
shake from the ISP’s view. Once a TLS session has been established,
the client directly reaches out to the server outside the tunnel and
resumes the session using the TLS resumption protocol (§2.2). Since
ISPs primarily use the leaky TLS1.2 handshake to filter for blocked
domains, hiding it from their view is sufficient to evade such filters.

As BlindTLS closely follows the TLS1.2 protocol, deviating only
slightly during session resumption, we evaluate and show that a
client can access >50% of websites blocked by an Indian ISP without
making any modifications to servers (§4.2).

https://doi.org/10.1145/3473604.3474564
https://doi.org/10.1145/3473604.3474564
https://doi.org/10.1145/3473604.3474564


FOCI’21, August 27, 2021, Virtual Event, USA Sambhav Satija and Rahul Chatterjee

2 BACKGROUND & RELATEDWORK
2.1 TLS handshake
Leaky TLS handshake: In the TLS handshake (both TLS1.2 and
TLS1.3), the client sends the domain name of the server in plaintext
in the Server Name Indication (SNI) field [9]. Moreover, in TLS1.2,
the server presents its certificate in plaintext which includes the do-
main name. Either of these two, a plaintext SNI value or a plaintext
certificate, is enough to reveal to a snooping ISP that the connection
is intended for a blocked website and can be dropped.
Necessity for SNI: While establishing the TLS session, the client
expects to receive a valid certificate for the corresponding domain
it reached out to. This is a bit tricky in the real world where sites are
hosted by front end proxy servers or load balancers, like CloudFlare
and Akamai. A given Apache/nginx process, for example, could
be listening on a specific IP but be hosting multiple websites, each
on different domains and therefore with separate certificates. The
server uses the domain name provided in the SNI field to serve the
correct certificate to the client.
Plugging leaks in the TLS1.3 handshake: TLS1.3 [23] changed
some parts of the handshake to prevent leaking the server’s domain
name in plaintext:

(1) Encrypted certificates: By the time the server has to present
a certificate to the client, they have already exchanged their
corresponding Diffie Hellman shares. Thus, the server is able
to encrypt the certificate with a secret key derived from the
handshake (§7.3 of [23]) before sending it across. The client
can derive the same key as well and is able to decrypt it. The
ISP however, is unable to read the certificate to extract the
domain name.

(2) encrypted-SNI (ESNI): The TLS1.3 handshake introduces an
optional ESNI extension [9] which contains the domain name
encrypted by the front-end server’s public key1. The front-
end server can decrypt the ESNI value to read the host value,
thus effectively blocking it from the view of ISPs.
The key reason why ESNI has been unsuccessful in providing
privacy is because it was not an in-built part of the TLS1.3
handshake, but an optional privacy extension. Chai et al. [3]
talk about the importance of quick ESNI adoption before
counter measures get deployed. Usage of this extension is
an explicit signal to the ISP that the client probably wants
to reach out to a blocked domain. They argue that since
ESNI is optional, the more number of innocent clients use
it, the harder it will be to deploy counter-measures against
it. Unfortunately, the GFW has already started dropping
packets that use the ESNI extension[15], rendering ESNI
ineffective.

Encrypted Client Hello (ECH): There is ongoing effort [4, 8, 9]
to encrypt the entire 𝐶𝑙𝑖𝑒𝑛𝑡𝐻𝑒𝑙𝑙𝑜 message, which would be a dras-
tic change in the handshake specification. Until ECH reaches mass
adoption, the ISP can easily drop such packets without worrying
about affecting the QoS for a large chunk of innocent citizens,
which is precisely what happened for handshakes which included
1To solve the chicken & egg problem, the client gets the server’s public key as a TXT
record from DNS. Furthermore, the integrity of this DNS record is ensured using
DNSSEC.

ESNI. This change is expected to be more successful if most com-
mon browsers quickly adopt this. However, the deployability of
ECH is key to realize the promise of immediate mass adoption. It
will need to consider the network ossification problem: can mid-
dleboxes found in the wild gracefully handle changes to the TLS
protocol? Moreover, server administrators will need to ensure that
they update DNS records with corresponding servers’ public keys.
While CDNs will probably adopt this quickly, tools will need to be
developed to allow admins of smaller websites to deploy ECH with
zero or minimal friction.

To recap, connections using TLS1.2 can be censored because the
handshake leaks the domain name in both the plaintext certificate
and the SNI value.While TLS1.3 encrypts the certificate, ESNI, being
optional, has been ineffective at hiding SNI. Therefore, TLS1.3 is
still susceptible to SNI based censorship.

2.2 TLS resumption protocol
In order to better explain BlindTLS, we first describe the session
resumption protocol of TLS 1.2 [24].

To improve performance and prevent the need for handshakes
for each connection, the server sends a unique ticket to the client
once the first TLS handshake has been established. When the client
wishes to establish another TLS session with the server after some
time, it can simply send a𝐶𝑙𝑖𝑒𝑛𝑡𝐻𝑒𝑙𝑙𝑜 to the server along with this
ticket. The server can then, based on the implementation, either
decrypt the ticket or look it up from the database, thereby recreating
the earlier cryptographic session. This allows the client and the
server to immediately restart communication by reusing the secret
key established in the previous session. TLS resumption tickets
expire after a time period specified by the server, with the observed
TTL typically ranging from 5 minutes to 2 days.

TLS 1.3, however, has a slightly different resumption protocol
which makes it difficult to directly apply BlindTLS. In §5, we discuss
how BlindTLS can work with minor changes to TLS1.3.

We emphasize here that the client is required to send the SNI
valuewhile invoking the resumption protocol as well. So the domain
name is clearly visible to the ISP during a typical session resumption
handshake.

2.3 Feasibility of IP filtering
ISPs can easily block traffic to a specific IP destination. However,
as pointed out by [1, 25], they hesitate to do so. This intuitively
makes sense because in the current landscape of the internet, a
hefty portion of the traffic is handled by a small number of CDNs –
Cloudflare for instance handles more than 15% of the entire internet
traffic [28]. If an ISP employs IP filtering, it will have to drop traffic
to all other (potentially harmless) websites that sit behind that
particular CDN as well, resulting in overblocking.

Prior work has shown that Indian ISPs prefer to use DNS and
HTTP filters [29], and more recently SNI filters [25], but do not
employ IP blocking. A recent report [15] implies that GFW uses
SNI based filtering to censor HTTPS traffic as well. GFW is known
for employing IP level filters as long as the collateral damage is “ac-
ceptable”. It is unclear how the collateral damage is weighed against
the sensitivity of a blocked domain, for instance GFW immediately
bans the IP of Tor bridges, while CDNs are handled more carefully.



BlindTLS: Circumventing TLS-based HTTPS censorship FOCI’21, August 27, 2021, Virtual Event, USA

Aceto et al. [1] demonstrate that Korea and Pakistan do not block
IPs, while Bock et al. [2] show that Iran filters for blocked protocols
instead of blanket banning IPs.

2.4 Evading SNI based censorship
Domain Fronting [10] was an SNI spoofing technique that enjoyed
a lot of success in circumventing SNI censorship. Domain Fronting
exploits the fact that a lot of websites are hosted behind common
CDN servers and that such servers typically do not use the SNI
value to determine the backend host. The SNI value is indeed used
to serve the appropriate certificate, but the request is routed back to
the host specified in the HTTP Host header. This mismatch allows
a client to circumvent analysis of the TLS handshake by setting
allowed.com in the SNI field, but specifying blocked.com in the HTTP
Host header.

A shortcoming of domain fronting is that a client can only con-
nect to a blocked domain as long as it is behind a CDN that also
hosts an allowed domain. Unfortunately, major CDN vendors like
Cloudflare, Azure [7] and AWS [18] have banned domain fronting.
Moreover, the client never receives the certificate of 𝑏𝑙𝑜𝑐𝑘𝑒𝑑.𝑐𝑜𝑚,
but it receives one for 𝑎𝑙𝑙𝑜𝑤𝑒𝑑.𝑐𝑜𝑚. Thus, the client has to implicitly
trust the CDN that it indeed hosts the 𝑏𝑙𝑜𝑐𝑘𝑒𝑑.𝑐𝑜𝑚 backend.

Domain Hiding[13] bypasses filters which read the plaintext SNI
value by sending mismatched ESNI and SNI values. However, it
works only with TLS1.3 and can be filtered by checking for the
presence of the ESNI extension.

MultiFlow[19] uses the TLS resumption protocol in a manner
quite similar to BlindTLS. However, MultiFlow is a decoy routing
technique. It assumes the presence of a trusted router in the path
between the server and the client. In this lenient trust model, the
router knows the private Diffie Hellman share chosen by the client.
Moreover, it requires the presence of a separate bulletin board
service (decoy host server) to relay the response back to the client.

Threat Model: For our setting, we assume that a client wishes
to access a web page on 𝑏𝑙𝑜𝑐𝑘𝑒𝑑.𝑐𝑜𝑚 over HTTPS and the ISP
(the attacker) wants to prevent the client from doing so. The ISP
can observe and manipulate any traffic involving a client within
its service, but is unable to read or affect the traffic outside its
boundaries. Thus, there are clients outside its service which can
access 𝑏𝑙𝑜𝑐𝑘𝑒𝑑.𝑐𝑜𝑚. The ISP is free to apply any technique it wishes
to censor 𝑏𝑙𝑜𝑐𝑘𝑒𝑑.𝑐𝑜𝑚, as long as it does not affect the connection
to any other allowed domain (𝑎𝑙𝑙𝑜𝑤𝑒𝑑.𝑐𝑜𝑚). This includes, but is
not limited to, tampering with DNS queries, dropping any packets
with certain signatures, and reading the domain name from the SNI
field or plaintext certificates.

We assume that the ISP cannot break the security guarantees
provided by TLS connections. Based on how ISPs typically censor
traffic (§2.3), we assume that the ISP does not employ IP-based
blocking. Additionally, we assume that the client can find a TCP
proxy node which is not served by the same ISP, and can establish
an encrypted channel with it. This proxy in turn has unfettered
access to the server hosting 𝑏𝑙𝑜𝑐𝑘𝑒𝑑.𝑐𝑜𝑚. We do not require the
proxy to be honest. While a malicious proxy can leak the identity
of the client and degrade performance by not forwarding packets,
it cannot break the security of the TLS connection.

client

vpn server

dns

dns

isp filters

1

2

3

3

4

2

Figure 1: BlindTLS flow: each circled step corresponds to
those in §3. The vpn node is the proxy node.

3 DESIGN OF BlindTLS
We now present how BlindTLS uses TLS1.2 to effectively hide the
true SNI value from snooping ISPs, while still validating the server
by receiving the certificate for the blocked domain.

At a high level, BlindTLS is quite straightforward: the client
hides the initial TLS handshake from the ISP by tunneling it via the
proxy, and resumes it in plain sight of the ISP. Specifically,

(1) The client finds a TCP proxy node and establishes an en-
crypted channel with it.

(2) The client first makes a DNS query for 𝑏𝑙𝑜𝑐𝑘𝑒𝑑.𝑐𝑜𝑚 and
then initiates the TLS handshake with the supposed server
IP. Both these requests are made via the proxy.

(3) On establishing the TLS session, the client waits for the
server to send a resumption ticket. This can be achieved by
sending normal HTTP requests to the server.

(4) Once the client possesses the resumption ticket, it directly
reaches out to the same server IP from the previous step
and initiates the session resumption protocol (details given
in §2.2) using this freshly acquired resumption ticket. In this
step however, we deviate from the prescribed TLS1.2 specifi-
cation by sending a random innocuous domain (𝑎𝑙𝑙𝑜𝑤𝑒𝑑.𝑐𝑜𝑚)
in the SNI header.

In the case of a malicious proxy node, or one with transient connec-
tivity issues, (3) or (4) might fail. The client can then pick a different
proxy and restart the protocol. After a successful resumption, a
server might provide a fresh resumption ticket to the client. The
client can use this new ticket to directly establish a new connection
(step 4) the next time. In case a server does not provide a fresh ticket,
or if the previous ticket expires, the client reruns BlindTLS. We
now further discuss the three techniques BlindTLS uses to function
effectively:



FOCI’21, August 27, 2021, Virtual Event, USA Sambhav Satija and Rahul Chatterjee

DNS queries: The client routes the DNS queries via the encrypted
proxy tunnel. This allows it to circumvent any DNS censorship
mechanisms of its ISP. The client can gain further trust in the DNS
response by making a DoH or DoT query via the proxy. Regardless,
the client will finally trust the result because it does the entire TLS
handshake with the resolved IP address; this step includes receiving
and validating the certificate for 𝑏𝑙𝑜𝑐𝑘𝑒𝑑.𝑐𝑜𝑚.
Same IP re-connection: While resuming the TLS session, the
client attempts to connect to the same physical server by directing
its traffic to the same IP from step 2. This is because if a TLS resump-
tion request somehow reaches a server which is unable to handle
the ticket, it will be treated as a fresh TLS handshake request. While
some CDNs [5] have mechanisms in place which allow different
edge servers to resume each other’s sessions, it is not widespread.
Spoofing SNI during resumption: As mentioned earlier, the
TLS1.2 resumption request includes the SNI value in plaintext. In
step 4, the client sends an arbitrary innocuous value (𝑎𝑙𝑙𝑜𝑤𝑒𝑑.𝑐𝑜𝑚)
in the SNI field, instead of 𝑏𝑙𝑜𝑐𝑘𝑒𝑑.𝑐𝑜𝑚. Moreover, the server does
not present any certificates during the resumption protocol. Thus,
the ISP is effectively blinded from ever knowing the true value of
the domain name. The key insight of BlindTLS is that a server need
not look at the SNI value if it finds the resumption ticket in its cache.

BlindTLS is different from past work like Domain Fronting. In
Domain Fronting, the client spoofs the SNI value to one of the co-
resident domains hosted by the same server. Therefore, the client
receives a valid certificate for 𝑎𝑙𝑙𝑜𝑤𝑒𝑑.𝑐𝑜𝑚 instead of the intended
𝑏𝑙𝑜𝑐𝑘𝑒𝑑.𝑐𝑜𝑚 domain and has to trust that the server indeed hosts
𝑏𝑙𝑜𝑐𝑘𝑒𝑑.𝑐𝑜𝑚 as well. This constraint arises because the server needs
to present some certificate that the client can validate; this is re-
quired to establish trust in the TLS session. Thus, Domain Fronting
primarily works for websites which are hosted behind CDNs. More-
over, it assumes an oracle which informs the clients about active
domains hosted by that CDN. BlindTLS does away with all three
constraints: A client can reach out to websites that could either
be independently hosted or behind a CDN, it does not require any
oracle and finally, it removes the trust requirement on a CDN by
receiving and validating the actual blocked domain’s certificate.

4 EVALUATION
We have built a prototype of BlindTLS using OpenSSL [26]. We
use openssl s_client to establish a TLS1.2 connection with a server,
save the session (including the resumption ticket), and later resume
the connection from the saved session information. As and when
needed, we tunnel packets via a TCP proxy node in the US (Spec-
trum ISP). We establish this TCP proxy by utilizing the remote port
forwarding capabilities of SSH.We also tested the setup with a small
number of websites on ProtonVPN [22] and found no difference in
the responses. In our evaluation, the client attempts to resume the
session immediately after receiving the ticket to prevent it from
expiring. This is representative of a real world setup.

The goal of the evaluation is to check: (a) Is it feasible to use
BlindTLS to connect to an unmodified HTTPS server? and (b) Can
BlindTLS effectively circumvent censorship by a real-world ISP? To
check that the client sees the correct website after resumption, we
save the homepage of the website after the initial TLS handshake

and after we resume the session. In all instances where BlindTLS
was successful in resuming the session, we found no difference in
the web pages.

4.1 Feasibility of using BlindTLS for
unmodified servers

Alexa top100: We first test whether BlindTLS can be used against
servers deployed in the wild. For this, we tried accessing the Alexa
top100 websites using BlindTLS and record howmany of these were
accessed successfully. For this setup, the client’s ISP was AT&T
(west USA), while the proxy’s ISP was Spectrum (east USA).

We found that BlindTLS could connect to 47 websites success-
fully. Among the 53 that it could not connect to, further investiga-
tion revealed that 16 websites did not support TLS session resump-
tion, or rather, openssl s_client did not receive a TLS resumption
ticket. Servers of the remaining 37 websites refused to resume the
session with a spoofed SNI value and instead attempted a fresh
handshake. Different edge servers evidently differ in how they han-
dle SNI field modification. Further investigation could reveal how
different web server implementations react to SNI spoofing in the
resumption handshake. Disproportionate use of such webservers
in the Alexa top100 websites could dramatically affect the results.
Latency: BlindTLS introduces latency by establishing an initial
TCP+TLS session with the server over the encrypted tunnel. While
this is an overhead of 3 RTTs, we expect this initial cost to get
amortized since the rest of the communication happens directly
between the client and the server.

Due to DNS load balancing, a resolved IP is typically geographi-
cally close to the node which initiated the query. Thus, in BlindTLS,
if the proxy being used is far away from the client, the client might
have to communicate with a server that is not necessarily the clos-
est. However, this should still be more performant than routing the
entire traffic via the proxy, a VPN node or Tor.

4.2 Efficacy of BlindTLS Against a Real ISP
As we show, nearly half of the websites already support session
resumption and allow SNI modifications. However, these are Alexa
top100 websites; although a few of them are blocked in certain
countries, none are blocked in the US, which is where we did our
first experiment. We therefore now turn to validate the efficacy
of BlindTLS against an ISP that does block a number of websites:
Reliance Jio (a major ISP operating in India). As of Feb. 2021, Jio
serves more than 35% of wireless users in India [21], the largest
share of users compared to any other ISP in India. Moreover, Jio
employs the most aggressive censorship techniques amongst all
Indian ISPs [25]. For instance, it is the only Indian ISP which ac-
tively uses SNI filtering to detect and block traffic. Therefore in this
experiment we setup a client that is served by Jio ISP.

Singh et al. [25] provide a corpus of 5,798 domains that the
Indian ISPs have been ordered to block. Out of these domains, we
randomly sample 500 domains to test if we can access them using
BlindTLS. Of these 500 domains, we could only retrieve A records
for 332 of them using Cloudflare’s DoH server. This is expected
because blocked websites frequently change their domain names
and discard their previous ones in an effort to stay ahead of ISP
DNS blocking.



BlindTLS: Circumventing TLS-based HTTPS censorship FOCI’21, August 27, 2021, Virtual Event, USA

We now verify the techniques Jio uses to block these domains.
We do not test for DNS filters or attacks as BlindTLS (step 2 of
§3) explicitly sidesteps any DNS-based censorship techniques em-
ployed by the client’s ISP. We first check whether Jio employs IP
filtering. We do that by attempting to establish a TCP session with
the domain’s resolved IP on port 443. We find that all connections
succeed, except 4. For these 4, we reattempt the TCP connection
to port 443 from 2 different ISPs in USA and India each and the
connection fails for each case. Hence we safely assume that there is
no longer any active server on these IPs. Therefore, Jio clearly does
not use IP-based blocking. This is critical for BlindTLS because the
client will directly reach out to the server IP post resumption.

To test for SNI filtering, we set up a server which accepts TLS
connections with any SNI value and have the client establish TLS1.2
sessions using the remaining 332 domain names. Surprisingly, we
found that all sessions succeeded; Jio never really checked the SNI
value during the handshake2. We then modified our server such
that it replies with a certificate which specifies a blocked domain
as the bound domain name. TLS sessions fail in this case; thus Jio
censors traffic by looking at the domain name in the certificate
presented by the server during the TLS1.2 handshake.

Interestingly, this is different during a TLS1.2 resumption hand-
shake. Jio drops connections based on the SNI value specified in
the resumption protocol. These 2 findings motivate the need for (a)
receiving the certificate via an encrypted tunnel — where all the
TLS handshake traffic is encrypted and (b) spoofing the SNI during
TLS session resumption.

Knowing that Jio does not do IP filtering, but does check the leaky
TLS1.2 handshake, we run BlindTLS to see if it is able to effectively
circumvent these filters. The client is behind Jio in India and the
proxy node is in the USA. Of the 332 domains, openssl s_client
was unable to establish and save the session for 120 domains. In
these cases, the server did not serve any TLS certificate – this can
again be explained by website admins discarding the domain names
and forgetting to remove the DNS entries. Thus, we are finally left
with 212 live domains that actively host content and Jio is actively
preventing connections to them.

Of these 212 active domains, the client is able to use BlindTLS
to successfully access 116 domains, achieving a censorship circum-
vention rate of 54%. The remaining 46% servers did not resume
the session (step 4) and instead restart the TLS handshake protocol
by presenting their certificate, effectively getting blocked by Jio.
We manually validate that the client sees the same website both
during the initial handshake and post resumption. This breakup is
illustrated in Fig. 2.

5 DISCUSSION & FUTURE DIRECTIONS
We now discuss some limitations of BlindTLS and the potential
ways an ISP might able to detect and stop its use. We list some
possible ways to avoid its detection and argue why attempting to
block BlindTLS traffic will lead to over-blocking. We also outline
how BlindTLS could be deployed and how it would manage proxy
peers.

2We validated that all handshakes fail when TLS1.3 is used – i.e. Jio looks at the SNI
value in TLS1.3.

Figure 2: Out of the sampled 500 domains (all actively cen-
sored by Jio), 168+120 are no longer accessible. Of the 212
alive websites, BlindTLS is successful for 116 (54%).

Investigating BlindTLS’s unsuccessful attempts: While eval-
uation against a real world ISP shows that BlindTLS is able to
circumvent the filters for a majority of blocked domains, it is not
immediately clear why it fails for the rest.

One broad reason for this could be that the server’s TLS setup
is different from what BlindTLS expects. Due to the various TLS
libraries and server implementations being used, there could be
inconsistencies in how they react to unexpected input. Specifically,
some server implementations might trip when BlindTLS sends a
modified SNI value during resumption. It could also be the case that
some implementations do not allow TLS resumption when a client’s
IP has changed. While less probable, it is also possible that some
servers have simply not enabled the TLS resumption protocol. A
systematic study of common server setups (configuration and TLS
libraries) and attempting resumptionwith changing client IPswould
be a reasonable next step in understanding such inconsistencies.

Another possibility is that the client ends up talking with differ-
ent hosts. As discussed earlier, if a TLS resumption request reaches
a physical server which is unable to handle it (decrypt it, or find it
in its cache), it is treated as a simple𝐶𝑙𝑖𝑒𝑛𝑡𝐻𝑒𝑙𝑙𝑜 and a new session
handshake is initiated. While BlindTLS attempts to communicate
with the same physical host by using the original IP address (step 4
of §3), this might be insufficient in CDNs which employ anycast
to distribute load. In anycast, two different hosts share the same
physical IP so that the client is automatically routed to the nearest
one. Thus, a client might end up communicating with one host
when it sets up the initial TLS handshake via the proxy node, but be
inadvertently routed to a different host while attempting to resume
the session. This phenomena could have been further amplified in
our evaluation setup given the geographical difference between
our client and proxy node. A further study which places the client
and the proxy close by, while still in different countries, could yield
more insight. We leave this for future work.
Censoring BlindTLS: ISPs could identify the use of BlindTLS in
multiple ways. For example, an ISP could actively probe3 the server
to check if it indeed hosts the domain passed in the SNI value of
the TLS resumption request. This requires the ISP to attempt to
establish a TLS connection with the server using the observed SNI
value. If the server does not host the domain, it will respond with
3As of now, only GFW uses active probing to discover censorship evasion attempts.



FOCI’21, August 27, 2021, Virtual Event, USA Sambhav Satija and Rahul Chatterjee

either a wrong certificate for a different domain, or an error message
stating that there is no valid certificate for that domain. In either
case, the ISP will learn that this was probably an evasion attempt.
Of course, if the server hosts the domain then this approach will
not work, and the ISP will be unable to detect SNI spoofing. Thus if
available, BlindTLS should use a domain that is allowed by the ISP
and is served by the same IP address. This is similar to the approach
used by Domain Fronting.

Servers can make such active probing attempts by ISPs even
less effective by simply responding with a self-signed certificate
for any queried domain that they do not have a certificate for. Such
a certificate would be valid for establishing TLS connections, and
ISPs cannot filter on this without blocking the use of all self-signed
certificates, a common usecase amongst developers. ISPs could try
to create maps of SNIs to server IPs, and look for anomalies in usage.
But we believe such a mapping will produce too many false alarms
due to IP addresses being constantly reused, making it ineffective.

Another way an ISP can attempt to prevent circumvention by
BlindTLS is by blocking communication to proxy nodes. We note
that BlindTLS only needs an encrypted tunnel. This simple primitive
can be achieved in numerous ways, for instance, by exploiting the
remote port forwarding capabilities of SSH, VPN gateways, or even
tunneling this traffic within an HTTPS connection (similar to DoH).
It would be infeasible for an ISP to disable all such protocols.

Finally, ISPs can disable BlindTLS by simply dropping all TLS ses-
sion resumption packets. This would result in effectively blocking
BlindTLS, while innocent clients would still be able to reconnect
to allowed websites by always re-initiating the TLS session. We
note that such a blanket ban would however degrade performance
for all users and also significantly impact the performance of all
servers, blocked or otherwise. Session resumption was added in the
TLS specification precisely because a majority of web requests are
short lived and the cryptographic cost of repeated TLS handshakes
becomes the primary overhead for such connections. TLS session
resumptions amortize the cost of the full TLS handshake if the
client and the server have had a recent TLS connection.

More broadly, the security of BlindTLS does not depend on a large
number of clients quickly adopting it, a property that ESNI required.
ESNI was built as an optional header in the TLS1.3 𝐶𝑙𝑖𝑒𝑛𝑡𝐻𝑒𝑙𝑙𝑜
message. The success of ESNI relied on quick adoption: If many
honest clients start using ESNI without falling back to standard SNI,
the ISP would be forced to disrupt the communication of honest
clients in an effort to stop ESNI. Since less than 0.01% of client
traffic [3] used the ESNI field, GFWwas able to simply drop all such
packets [15] without much outcry. BlindTLS on the other hand,
exploits the behaviour of already deployed webservers in how they
handle spoofed SNI values during resumption. While newer server
versions could check that the SNI value during resumption matches
the original value, we do not believe an ISP can block all servers
which simply do not upgrade their implementations. Failure to
upgrade to a recent version cannot be construed as the server’s
intent to aid in circumvention.

Managing proxy nodes: In order to find the list of available proxy
nodes, solutions for finding Tor relays directly apply [27]. Even if a
client picks a malicious node, the security of the TLS connection
will not be affected, and a client can simply choose another one.

While this leaks the client’s IP to the adversary, to the best of our
knowledge, no ISP/firewall has the capacity to actively maintain
a block-list of client IPs. Furthermore, a direct link between the
client and the requested domain name can be circumvented using
anonymous messaging systems [16].

Benefits on selectively tunnelling packets: BlindTLS differs
from past work in that it uses a covert channel only for establishing
the initial TLS handshake. The client then switches to using its
original ISP for all subsequent traffic. This significantly cuts the
compute and bandwidth requirements of existing proxy nodes (for
instance, VPN gateways). In such a setting, the cost to spin up
peer nodes can be drastically lowered, enabling quicker adoption.
We believe that this should also enable volunteers[20] across the
globe to willingly participate as proxy nodes. Additionally, since
BlindTLS allows the client to directly communicate with the server,
its performance is not adversely affected by a sluggish intermediary
proxy.

Adopting BlindTLS for TLS1.3: TLS1.3 requires that the SNI sent
during resumption matches the one sent in the initial handshake.
There is no obvious inherent benefit to this design other than for
the purpose of making the resumption handshake similar to the
original one. Specifically, we leave it to future work to investigate if
the original TLS1.2 functionality can be backported to TLS1.3. This
would allow BlindTLS to cleanly work for TLS1.3 without further
modifications.

Deploying BlindTLS: We envision integrating BlindTLS into a
browser or a similar application that can (a) filter and route packets
to different interfaces when needed, (b) setup the TLS handshake
and (c) later modify the SNI field during session resumption. The
user could specify a custom proxy peer, along with the mechanism
for setting up an encrypted tunnel, or the browser could simply pick
one at random from the list it has. Such a browser could behave as
usual most of time until connections to a specific site get constantly
dropped. Then, the browser could use BlindTLS to transparently
gain access to the website.

Ethical considerations: This paper did not study any human
subjects and raise any ethical issues. While investigating the TLS
session resumption behaviour of different servers, we made less
than 2 requests per minute, which is negligible compared to the
traffic served by such public servers.

6 CONCLUSION
We presented BlindTLS, a method to circumvent TLS-based HTTPS
censorship by spoofing the SNI value during TLS resumption, and
discuss some initial results of its potential to be used in practice
without any modification to the web servers. Preliminary evalua-
tions show that BlindTLS can successfully connect to 54% of sites
blocked by a major Indian ISP.

Acknowledgments
We thank our shepherd Will Scott and the anonymous reviewers
for their valuable suggestions and feedback. We also thank Sachin
Ashok, Kushagra Singh, and Sudheesh Singanamalla for their fruit-
ful discussions and support.



BlindTLS: Circumventing TLS-based HTTPS censorship FOCI’21, August 27, 2021, Virtual Event, USA

REFERENCES
[1] Giuseppe Aceto, Alessio Botta, Antonio Pescapè, Nick Feamster, M Faheem Awan,

Tahir Ahmad, and Saad Qaisar. 2015. Monitoring Internet censorship with UBICA.
In International Workshop on Traffic Monitoring and Analysis. Springer, 143–157.

[2] Kevin Bock, Yair Fax, Kyle Reese, Jasraj Singh, and Dave Levin. 2020. Detecting
and Evading Censorship-in-Depth: A Case Study of Iran’s Protocol Whitelister. In
10th USENIXWorkshop on Free and Open Communications on the Internet (FOCI 20).
USENIX Association. https://www.usenix.org/conference/foci20/presentation/
bock

[3] Zimo Chai, Amirhossein Ghafari, and Amir Houmansadr. 2019. On the impor-
tance of encrypted-SNI ({ESNI}) to censorship circumvention. In 9th {USENIX}
Workshop on Free and Open Communications on the Internet ({FOCI} 19).

[4] CloudFlare Christopher Patton. 2020. Good-bye ESNI, hello ECH! https://blog.
cloudflare.com/encrypted-client-hello/. (2020).

[5] Cloudflare. 2021. TLS Session Resumption: Full-speed and Secure. https://blog.
cloudflare.com/tls-session-resumption-full-speed-and-secure/. (2021).

[6] Roger Dingledine, Nick Mathewson, and Paul Syverson. 2004. Tor: The Second-
GenerationOnion Router. In Proceedings of the 13th Conference on USENIX Security
Symposium - Volume 13 (SSYM’04). USENIX Association, USA, 21.

[7] Eric Doerr. 2021. Securing our approach to domain fronting
within Azure . https://www.microsoft.com/security/blog/2021/03/26/
securing-our-approach-to-domain-fronting-within-azure/. (2021).

[8] N. Sullivan E. Rescorla, K. Oku. 2020. TLS Encrypted Client Hello. RFC. https:
//tools.ietf.org/html/draft-ietf-tls-esni-08

[9] D. Eastlake. 2011. Transport Layer Security (TLS) Extensions: Extension Definitions.
RFC 6066.

[10] David Fifield, Chang Lan, Rod Hynes, Percy Wegmann, and Vern Paxson. 2015.
Blocking-resistant communication through domain fronting. Proceedings on
Privacy Enhancing Technologies 2015, 2 (2015), 46–64.

[11] P. Hoffman and P. McManus. 2018. DNS Queries over HTTPS (DoH). RFC 8484.
[12] Z. Hu, L. Zhu, J. Heidemann, A. Mankin, D. Wessels, and P. Hoffman. 2016.

Specification for DNS over Transport Layer Security (TLS). RFC 7858.
[13] Erik Hunstad. 2020. New tool brings back ’domain

fronting’ as ’domain hiding’. https://www.zdnet.com/article/
def-con-new-tool-brings-back-domain-fronting-as-domain-hiding/. (2020).

[14] Josh Karlin, Daniel Ellard, AldenW Jackson, Christine E Jones, Greg Lauer, David
Mankins, and W Timothy Strayer. 2011. Decoy Routing: Toward Unblockable
Internet Communication.. In FOCI.

[15] Dave Levin Kevin Bock. 2020. Exposing and Circumventing China’s Censorship
of ESNI. https://gfw.report/blog/gfw_esni_blocking/en/. (2020).

[16] David Lazar, Yossi Gilad, and Nickolai Zeldovich. 2018. Karaoke: Distributed Pri-
vate Messaging Immune to Passive Traffic Analysis. In 13th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 18). USENIX Association,
Carlsbad, CA, 711–725. https://www.usenix.org/conference/osdi18/presentation/
lazar

[17] LetsEncrypt. 2021. HTTPS stats. https://letsencrypt.org/stats. (2021).
[18] Colm MacCarthaigh. 2018. Enhanced Domain Protections for Ama-

zon CloudFront Requests. https://aws.amazon.com/blogs/security/
enhanced-domain-protections-for-amazon-cloudfront-requests/. (2018).

[19] Victoria Manfredi and Pi Songkuntham. 2018. MultiFlow: Cross-Connection
Decoy Routing using {TLS} 1.3 Session Resumption. In 8th {USENIX} Workshop
on Free and Open Communications on the Internet ({FOCI} 18).

[20] Daiyuu Nobori and Yasushi Shinjo. 2014. VPN Gate: A Volunteer-Organized
Public VPN Relay System with Blocking Resistance for Bypassing Government
Censorship Firewalls. In 11th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 14). USENIX Association, Seattle, WA, 229–241. https:
//www.usenix.org/conference/nsdi14/technical-sessions/presentation/nobori

[21] Telecom Regulatory Authority of India. 2021. Telecom Subscription Data as on
28th February, 2021. https://www.trai.gov.in/sites/default/files/PR_No.27of2021_
0.pdf. (2021).

[22] Proton. 2020. Proton VPN. https://protonvpn.com/. (2020).
[23] E. Rescorla. 2018. The Transport Layer Security (TLS) Protocol Version 1.3. RFC

8446.
[24] J. Salowey, H. Zhou, P. Eronen, and H. Tschofenig. 2008. Transport Layer Security

(TLS) Session Resumption without Server-Side State. RFC 5077.
[25] Kushagra Singh, Gurshabad Grover, and Varun Bansal. 2020. How India Censors

the Web. In 12th ACM Conference on Web Science (WebSci ’20). Association for
Computing Machinery, New York, NY, USA, 21–28. https://doi.org/10.1145/
3394231.3397891

[26] The OpenSSL Project. 2003. OpenSSL: The Open Source toolkit for SSL/TLS.
(April 2003). www.openssl.org.

[27] Tor. 2021. Tor BridgeDB. https://bridges.torproject.org/bridges. (2021).
[28] W3Techs. 2020. Usage statistics and market share of Cloudflare. https://w3techs.

com/technologies/details/cn-cloudflare. (2020).
[29] Tarun Kumar Yadav, Akshat Sinha, Devashish Gosain, Piyush Kumar Sharma,

and Sambuddho Chakravarty. 2018. Where The Light Gets In: Analyzing Web
Censorship Mechanisms in India. In Proceedings of the Internet Measurement
Conference 2018 (IMC ’18). Association for Computing Machinery, New York, NY,
USA, 252–264. https://doi.org/10.1145/3278532.3278555

https://www.usenix.org/conference/foci20/presentation/bock
https://www.usenix.org/conference/foci20/presentation/bock
https://blog.cloudflare.com/encrypted-client-hello/
https://blog.cloudflare.com/encrypted-client-hello/
https://blog.cloudflare.com/tls-session-resumption-full-speed-and-secure/
https://blog.cloudflare.com/tls-session-resumption-full-speed-and-secure/
https://www.microsoft.com/security/blog/2021/03/26/securing-our-approach-to-domain-fronting-within-azure/
https://www.microsoft.com/security/blog/2021/03/26/securing-our-approach-to-domain-fronting-within-azure/
https://tools.ietf.org/html/draft-ietf-tls-esni-08
https://tools.ietf.org/html/draft-ietf-tls-esni-08
https://www.zdnet.com/article/def-con-new-tool-brings-back-domain-fronting-as-domain-hiding/
https://www.zdnet.com/article/def-con-new-tool-brings-back-domain-fronting-as-domain-hiding/
https://gfw.report/blog/gfw_esni_blocking/en/
https://www.usenix.org/conference/osdi18/presentation/lazar
https://www.usenix.org/conference/osdi18/presentation/lazar
https://letsencrypt.org/stats
https://aws.amazon.com/blogs/security/enhanced-domain-protections-for-amazon-cloudfront-requests/
https://aws.amazon.com/blogs/security/enhanced-domain-protections-for-amazon-cloudfront-requests/
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/nobori
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/nobori
https://www.trai.gov.in/sites/default/files/PR_No.27of2021_0.pdf
https://www.trai.gov.in/sites/default/files/PR_No.27of2021_0.pdf
https://protonvpn.com/
https://doi.org/10.1145/3394231.3397891
https://doi.org/10.1145/3394231.3397891
www.openssl.org
https://bridges.torproject.org/bridges
https://w3techs.com/technologies/details/cn-cloudflare
https://w3techs.com/technologies/details/cn-cloudflare
https://doi.org/10.1145/3278532.3278555

	Abstract
	1 Introduction
	2 Background & Related Work
	2.1 TLS handshake
	2.2 TLS resumption protocol
	2.3 Feasibility of IP filtering
	2.4 Evading SNI based censorship

	3 Design of BlindTLS
	4 Evaluation
	4.1 Feasibility of using BlindTLS for unmodified servers
	4.2 Efficacy of BlindTLS Against a Real ISP

	5 Discussion & Future Directions
	6 Conclusion
	References

